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PREFACE

The HEMP 3D numerical technique for calculating elastic-plastic flow in three

space dimensions and time was developed in the late 1960s at the Lawrence Livermore

National Laboratory with funding from the Material Science's Office of the Defense

Advance Research Projects Agency (DARPA). The numerical scheme programmed for

the CDC 6600 computer by John French was first presented at the Second International

Conference on Numerical Methods in Fluid Dynamics at the University of California,

Berkeley, September 15-19, 1970. The usefulness of the computer simulation program at

that time was limited by the lack of adequate three dimensional graphics. With continued

funding from DARPA, a production program was :;eveloped for the CDCSTAR

Computer by Eugene Cronshagen using vector programming, including three

dimensional graphics. This work was published in 1975 as UCRL-57574, "A Method for

Computer Simulation of Problems in Solid Mechanics and Gas Dynamics in Three

Dimensions and Time." The program has for many years been operating on the CRAY-1

computer at the Lawrence Livermore National Laboratory. Presented here is an update of

the 1975 report that includes the sliding surface routines programmed by Robert

Gulliford.
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HEMP 3D-A Finite Difference Program
for Calculating Elastic-Plastic Flow

INTRODUCTION

The HEMP 3D program can be used to solve problems in solid mechanics

involving dynamic plasticity and time dependent material behavior and problems in gas

dynamics.

The equations of motion, the conservation equations, and the constitutive relations

listed below are solved by finite difference methods following the format of the HEMP

computer simulation program formulated in two space dimensions and time.1

A. Equations of motion.

0) d zdX +__Y+d-
~dt dx dy dz

in d T d IE. dT,

i P _di + _. + _z

ii) d! dT_ dT dI
dt dx dy dz

B. Conservation of mass and energy.

i) dM
i) -=0 ; M = Mass element

dt

C. First law of thermodynamics.

i) It=_(P +q)V + VIsJ. + sYAY + sut,,+ T,• + Tyt, i,+ T==]

E = Internal energy per original volume

V = Relative volume = pO/p

p = actual density
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pO = reference density of equation of state

D. Velocity strains.

i) iv) & +

ii) • 
V)

iii) C,, = vi) ty. = +

E. Stress deviator tensor.

i) S. = 2p t. -. J iv) t7 =.t(i)

ii) 7r= 2!{i7y- 1 v) t.~p~~

iii) i =24 -I vi)3

g = shear modulus

F. Pressure equation of state.

i) P=a(rl-1)+b(r7-1)2+c(77- 1)3 +di7E

ii) = 1 = p / p0 , where a, b, c and d are equation-of-state constants
V

G. Total stresses.

i) Y =-(P +q)+ s.

ii) -(P +q)+ s,

iii) YZ, 2=-(P + q) + s,,
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H. Artificial viscosity.

i) q = C d2p L JL), + CpLa ,

CO and CL are constants

ii) = -rate of strain in the direction of acceleration
dt

L - measure of grid size

a - local sound speed

p i local density

1. von Mises Yield Condition

i) 4 -7-- Y_5 o

Y = plastic flow stress

Y = a(b + P)c

E= equivalent plastic strain

2J = second invariant of the deviatoric stress tensor

a, b and c are flow stress constants.

FINITE DIFFERENCE EOUATIONS FOR HEMP 3D

The finite difference equations that integrate the equations of physics are based on

the divergence theorem. Partial derivatives are evaluated by summing the flux through

the surface enclosing an element of mass.
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Thus, both the physics equations and the method of solving them are in a conservation form.
The physical object is divided into zones defined by eight grid points. Fig. I. The

grid. (ij,k) moves with the mam-iai and the mass within a zone remains consmm. In the
notanons that follow a superscrpt refers to the time centering of a parame= or equaion
and the subscript refers to the space centering.

Defininz the Vectors

Three vectors are associated with each of the eight grid points. g, shown in Fig. I.

g2
Vector Components

-- '::• A: (a,)1 = x, :(s = y, 4  ;a) = z4 -;z.

"c A 14 , B: (bi),=x.-.•;(bj) =y2-yl;(b,=Z2-;-

l "" 2

g2
Vector Components

A: (ab) 2 = Z =y Cy2;(;)2 =z3-z 2 "

C i -

2L • B: (C,)2 =. -x;(c ) 2=y6-y 2;(C) 2 = Z,.t.

g3
- 7 Vector Components

.(,) =B, !)3 B: 'r)=x-,;(a,), = Y2- Y;(ak),=zý -z,.

A -: (Ci), = .-X.;(c),)=y7 -y 3 ;(c&).=z-z? .

Vector Components
SA: (a =x-x.;(a,). y,-y 4 ;(a,). =,-z".

A .• ,- B (b)4 =..-x.;(b,)=y,-y4 ;(b,)=;-z,
I c : (cl.) =x-x;(c•, y._,..( z, _Z.
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8Vector Components

5~-~• (a,), x= x- x5;(a),)5 Y =y- y.;(a.), z6 -z..

A: (bi)5 = x1 -x5;(bj)5 = y, = z1 -zn

1ý: (ci)5 = X. - Xs;(cjX = Y.- ys;(ck =-Z5.

,-~- -Vector Components

5Al A: (ai),=x 7,-x6;(aj,)=y7,-y4 ;(at) 6=z7-z6 .

~.. :(bi) =xY-5- x,;(bj)YS -Y6;(bk)6 =Z5- Z6-

g=7  2 (C), -C -6(i,:y - 6(k6 Z -6

A 7 VctorComponents

ý161 C Vcto (a,),= =;-,X 7; (a,)7 =yA- Y7; (ak), =Z.- Z7

I I A:(bJ)7 = X6-X7;(b) 7 y6 -Y7;(bk )7 = Z6 - 7

~:(C1)7 =X3 -X;(cJ)7 =y3-y7;(Ck)7 =zs-z 7.
9-8

-~8 Vector Components

A: (bi),=xs-xt;(bj) 1=ys-yg;(bh)I=zl-Zg.
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Refer to Fig 1.

Calculation of the Volume of Zone . YO

Refer to Fig. 1.

8 Jul

[ 9x=" c =g .. a a. -[bi(acl, - akcj)- bj(aick -ac,) +b,(ac, -ac,)]f'
I c , i C j C J u

Repeat for g =2 8

Calculation of the Mass of Zone 1. Ma

pO = reference density

VO _ initial relative volume
vO = actual volume calculated from the coordinates at time t =0.
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.Conservations of Mass

V6 M.v~ where va is the volume at time t =n and Výis the relative

volume. Similarly,

V; I I where the volume vfl+1 is calculated from the coordinates at

time n+ 1.

V 1/2 !(vefl++Vef) definition of relative volume at t = n + 112.

The following acceleration equations are applied to point 0 in Fig. 2.

Mass Associated with Point (i~j.k)

(OCij,j = 1[MO + Me +M% +M@ -,MIV +me M +®

Motion in the x Direction

1 a.dTy +az where

dj = ' ((Y-XX)a [(YVr-YV)(7iV-vYZV)-7qZV)(YiV-YV)]

"+ (YXX), [(YV-Yljl)(ZVrI-7II)-(Z~V-iII)(YVIYM)

"+ (T'xx)Q [6'j-y 1 l)(Z1 l-z1 l)-(Zvl-z1 ~)(Y1 l-y1 j)]



"+ (YX~X)®D [(Yr-Yx)(zlv-zii)-(Zr-zml)(Ylv-Yml)]

"+ (-XX)O [(y11-y111)(Z1-Z111)-(Z11-z111)(y1 -y111 )]) iP

fo form (1/p iaTxy/ay)7'k ,replace each Yx, in the above expression with Txy every y

with the corresponding x and every z with the corresponding y.

The x-direction velocity at n + 1/2 and positions at times n + 1 and n + 1/2 are:

*a+ '2 =*ni.-112 +d &A
XS.A =i~jk d.ct )*.j~k

Xi.j.k, + .j.ktt+/

2-le! +X.LI
Xi.j.'k 2\ ' J'k *.j./)

Motion in the yDirection

d #jkpi'j.tIdx dy dz Ji.j.kwhr

(P.) 4 JJ = same as (1/p iaXXX/9X).7k , defined above, except replace each YXX

by the corresponding value of Txy

(i2 )..izJ =samne as (I/P0 9TY/a)!k , defined above, except replace each Tx

by the correspondng value ofyXyy.

.IýE-.)"=same as (1/p d'Tzx/az)7% , defined above, except replace each Tzx

by the, roresponding value of yz
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The y-direction velocity at time n + 1 and positions at times n + 1 and n - 1/2 are:

*+1/2 *n12 + A

= .. , + I

+1~ =- Y:~~ "1" ,& •j1/

i+.k Y~j,k )

yal2 1 ." I • +l

Motion in the z Direction

, p'.j., Ldx y J.

P=same as (1/p c)7,xx/ax) ij., defined above, except replace each

Y~xx by the corresponding value of Tzx.

( 'dJJ.k =same as (1/p dTxy/ay) j.'1 , defined above; except replace each Txy

by the corresponding value of Tyz.

I oyz ji.k =same as (1/p aTzx/az) i.7.k defined above; except replace each

Tzx by the corresponding value of -zz.

The z-direction velocity at time n + 1/2 and positions at times n + 1 and n + 1/2

are:

'2 = +1/2 +1'2i.j~k -- Zi~j.k a}"j At
+, (dt , .~

k,.) = Z s..j * + +,. /2 & ̂ At+112
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=ij.• 2 + .- I- Zik).

Calculation of Incremental Strains

The finite difference mapping procedure to calculate the surface integral of zone

(®, Fig. 1, covers the surface in units of triangles. The velocity associated with a given

triangle is taken as the average of the velocities defined at the triangle corners. The
triangular surface area vectors are calculated to point out of the zone surface. The dot

product of the area vector with the direction vector multiplied by the average velocity

gives the velocity flux through the surface in the given direction. The mapping procedure

actually covers the zone surface area, Fig. 1, two times. The difference equations used to

calculate

"and A are given explicitly below.

The remaining velocity derivatives required to calculate the components of strain are
calculated by replacing i in those equations by , and then by i so as to complete the set:

Id-atdZ
0x 0yý 0-

& 0-ý

Velocity Derivatives Corresponding to Zone (0. Fig. 1.

(&)m[112 = (l v1/ [+1/2+~A(xY ~(

"w er 12 ,-- + e , ,

where
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(xA, 81  (x x2+x),(CA) =("I +*4 + -5 ),(iBC8 =) =(-' +.*2 +"S).

(ux ).T)=a, a, a. = [(ajbk-.akbj)]..=

1'i bj bk =

8CAi=c1 Ci Cj =k [~k -cai)J 1

a, a, at

(Xc-0.i)h bi bj =[(bjCk- bkCJ)].8

The above steps, written for g = 1, must be repeated for g =2 -8.

(aiT112 = (2 V1I2)5 .±A('1xh) 7+ ±.4AxA). - + is, (Wx). ;]+

where

(iu),.Iand I),.gc,,andare as defined above.

Ia, a, ak,,
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(fx e~j, b, b, -- =[-(b~c,,- b,:,),,=I.
C01 Ck Z=

The above steps, written for g = 1, must be repeated for g =2 -- 8.

' =12v1÷/2)j [I(A XB)- +i C XAi). +ic(B X e). -j]+12,

where

(-'B),.I,(Xc),.I. and (X~c),_- are defined above.0 0 1
(x§. ), a, ak =[(a., -a,,)],..

bi bj b kI,:,

(x•. _ A, Ci -it =[(ca, -co,)],.
ai a ak I--I

01XeO=1b jb =k [(c, -CA)

ci CiCA8=1

The above steps, written for g = 1, must be repeated for g =2 -- 8.

-= same as & /dx except replace x by the corresponding
Ox

0- same as &o/odx except replace x by the corresponding z
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same as do~/oy except replace i by the corresponding y

(y

- same as &/I&y except replace i by the corresponding i
dy

- same as -/&z except replace I by the corresponding

= same as d•/& except replace i by the corresponding

Incremental Strains

/" x,.n"+1'/2tae"@ kx)O

m+1/2

=A Y +/ [(ý)n I &+( ) '1/ 2  ]~.I

()1/21
( )+1I2 a [n+1/2

/211

(Avf+11 = (Ae)®

( A e xy .. ÷,/2 + a"12 +,x ÷'

" +1/2 -Lt-+2 /2

--•-71/ =(j•,-.)/2 + (Aeyy)n / + (Ae,,)Oi'" 1/



15

Calculation of Stress

Stress Deviators

•+1 . .•+1/2 1A

=s.)® (s.)j + 2ju (Ae=)I - +

, ( ) .+ p ( & ) .1 /2  -_ I ( A V) 1 1+. 2 (A.- 0

rottins. f z ne a rtae during thenr) =() +• .• +tim' ntralA'., =tl1 ,h srsssa

t +1 +2co ' ,-2 ,T+1/2

rO = (+.2)T; +2;(AT--x + (58),

+ 1 ) .+1/2 +•=) (Tr). + p(cy.)• +•-

Note: The terms 8i that have been added to the stress deviators are corrections for zone

rotations. If al zone has rotated during thle time interval Atn+1l2 = tn+l - tn thle str'esses at

time tn must be recalculated so that they will be referred to the x, y, z coordinate systems

in their new positions. I The correction terms are given by

3"1 = -2 o).^ T; + 2 w, T:.^,

3; = + 2 w," T; - 2 w: T;, - -a_

3'. =2 co T;-2 c)+oy' T-T,

• < (sn.- sý)+ w T;-c:- ;r,

45;~~~~ OD Py n)+ ~ . y ý
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where

CO: &tx++ 1/2,'+

S I' = A(V+' ) + B(V6')+ )E•',

where A and B are functions of the volume V and E is the internal energy.

Total Stresses

1 (pd + _.+,,2)_,_\-+,

"_(p(ý +q® 1"•12)( '~t

-- (. Ill,+q 11 ,)( ,

yon Mises Yield Condition

=)2 +2 qS 2)+(S 2 1 +)I+ 2 T+ (

(2 ) M + = - p s 1 q22+( y ) '
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2J ~ 2(y

If: KKV < 0 use the stress deviators as defined above.

If: K'"÷ >- 0, then multiply each of the stresses (s•.)'{ ,s 1,)• ,(s..)®D , (T4, (Ty,1)4, and
(T.,•) b y _2 -3 Yý)I2 FJ.

Principal Stress Deviators (for Edit Routine)

sI = 2Jj3cos I3,

S2= 2F '73cos(O/3 + 2z /3),

s3 = 24-ah- cos(/3 + 47r/3);

where

a=[(S~S. + s"..s + s,.s.)-_(T2 +T2 +T72)],

b = [-s,..ys.s + s..T,2+ s.T,2+ s Y .T - 2 TYT, T,,,,,

0=cos4' JF f~ b )].S>-2 3
= [~-aK2a)J 1 - 2

s, = maxSI~S2 9S3)

S3 = MnS,2S

S2= -(S. + S3)
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Artificial Viscosity

An artificial viscosity is required to permit shocks to form in the grid. The
artificial viscosity, q, used here is composed of a quadratic and linear function of the rate

of strain. The quadratic portion is a generalization to three dimensions of the one
dimensional von Neumann q for calculating shocks.2 The linear portion provides

damping for oscillations that can occur behind the shock with the q method of calculating

the shock front. The term ds/dt used in the q calculations here is the rate of strain in the

direction of acceleration. 3

q, 2 + CpLa
qt = CpL(.; -I

q=O for-4t > O ,

ds 2 [0? z 2A , + (A .)2 + j '+ )A .A.~
°•AA.

Ax, Ay and Az are the x, y, z components of acceleration respectively.

L = measure of the zone size taken here as: ýzone volume

CO= -2
CL= =1

The q is added to the pressure P.
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Tensor Artificial Viscosity for Stabilizing the Grid

For quasi-static problems in solid mechanics nonphysical numerical oscillations

can occur in the grid under certain boundary conditions. A tensor viscosity based on the
rate of strain of volume elements formed by the zone comers is used to damp this type

oscillation. Referring to Fig. 2 it is seen that surrounding point 0 there are eight
tetrahedrons defined by the corners of the eight zones. A Navier-Stoke type tensor

viscosity based on the rates of strain of the tetrahedron volumes is calculated for each
tetrahedron that contains 0, Fig. 2. The details for calculating the components of

viscosity for the tetrahedron in zone ) are given below.

The tetrahedron corresponding to zone C is shown in Fig. 3. The grid numbering

follows the scheme shown in Fig. 1. Here grid point 1 corresponds to point 0 of Fig. 2.
The finite difference integration mapping procedure is applied to the four surfaces of the

tetrahedron formed by vectors, A,B,C, of Fig. 3.

Volume vABC formed by the vectors A, B, C, of Fig. 3 is:

(YABc)I = (b X A)). e = 1[b1(ac, - ac) - bj(aick ahc,) + b,(aic -ac,)

The notation for the components of the vectors is the same as used for the vectors of the

volume of zone a).

Velocity Derivatives

Velocity derivatives corresponding to the tetrahedron, Fig. 3.

= (6V~2 ~ x b) -1 +jCCA&eX A) T+.i+,(h xg~ e) )JU
wher e).1 1] "

where
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-'AB=("I+ 2 + 4 ); 'CA,(=(-I+ -4 +-, -'Bc=('I+ 2 +.), 'S •=(, 2 + -4 + 5 )

and v;"+2 = [v" + v,•CI

This expression can be simplified by expressing vectors 6 and in terms of vectors A

and B.

where

(AX .'T)=(ab* -akb,) (Cx A4i~)=-(c~ak -ck, a).and (BX e.')=-(bick-bk c4
_ iC

-- ~i = 16vj/2 - xXX 6)" (C *)J+ -+ -X2) (e _.1)(§2

where

(AXA.j=-(a,b,-abj; (e X A.J)=-(c.ak-cka,),and ( X e.)=-(bjck-b,, c

where
Ax,§.i=(ab,-ab,); exA.4=(ca,-ca,); §Xe-4=(bcj-bjc,).

- and a are calculated in the same way as & /oax, but replace i by S and then i.

and 0 are calculated in the same way as & / dy, but replace i by y and then I.
dy d
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Sand- are calculated in the same way as doi/, but replace i by y and then 1.

Rates of Strain

Components of the rate of strain of the tetrahedron defined by vectors A, B, C, Fig. 3 are

e* +i. E. di)

vdx 6y xy(&0 i&--- + +g.

Artificial Viscosity

Tensor artificial viscosity for tetrahedron A, B, C, Fig. 3, is

a+112 n+1/2 x+112

1 /2 [l fl; ;+112 v ÷1 /2

x+1/2 n+1/2 x+1/2

t+1/2Al

,+1
where gl =[cNsj) V ]

CNS = constant - 10-2,

pO = reference density of zone 0,

V = relative volume of zone 0,

The above components of the tensor artificial viscosity are added to the corresponding components o1

stress tensor defined at time n + 1.
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Increment of energy dissipated by the tensor artificial viscosity

a

Aft = IV qk + q, + qs.t. + qt + q .+ qy,'A
i=1

Here i = 1-+ 8 are the eight nodes that define zone (D.

Energy Equation

Distortion Energy Increment

•,,Z+2 - vx,2[s.Ae. + s,,Aey + s.Ae. + T iAe T + TYAer + T,,Ae, ]1

sxx, etc. and Aexx, etc. are the components of the stress tensor and increments of strain
respectively defined at the zone center.

Total Internal Enery per Original Volume

E- -1 [A(VM'÷) + P-] + +i} "(V-÷1 -Vn)+ AT"÷1

I+-I [B( VM+Il . (41- Ia
1~q2lI 

(D-12

1q /2 + qn-1/2,

Note: It has been assumed here that the pressure equation-of-state has the form P = A(V)

+ B(V)E.
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Plastic Strain

In the following definitions of plastic strain the stress deviators at time (n+l) are
taken as the values after the yield condition has been satisfied. If yielding has not

occurred, these equations are bypassed.

Components of Plastic Strain Rate

*=a..+1M2 1 [s;+ -s -' 1V'+ -Vi]
- At '1 L2 + 3 V+11  J'

n+1/2 _ _ -+ -8,A 1 V'+ 1 -V]
i =Ate1/, 2  h 2p 3 V' +112

pin+l1/
2  e+I/2 1 I-+1 -T- 8 , , - 1

&^+1/ 2y +3 Vx'1/ 2

p-&+1I2 a+112 1 rt :++ 1  TA1 '

p-;+ 1 /2  n,;+1/2 1 [ +1 T; - 5Y

j.+112 etc. are the velocity strains in the calculation of the stress deviators.
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Equivalent Plastic Strain

(~~ +1 3 =Ž ý. ){+(P i. )2 + (pi. )2 (11 /2, ~ )

((Ey + (e)R+1/2 2"Atn+122

Flow Stress

yxI= ab+ ( )M+1 ]C

Here a, b and c are material constants, not to be confused with the vector components

aijk etc.

Time Step

(At).+312 = 0.6I

and (At)R+312 < 1. IAtx+l12 .

L is the minimum zone thickness, defined as

= _-7•+, where Vn+l = volume of zone associated with point ijk at tn+l, and

s^+' is the area of the largest side of the zone. Also, in this equation for At,

a = sound speed calculated from the equation-of-state and
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b = [C . +I C ,,L+ ( Id s l) +I / 2

where C2 and CL are the quadratic and the linear q constants, respectively, and d is thedt

rate of strain used in the calculation of q.

Further, (At)-+1 = +1(At

Boundary Conditions

Pseudo zones with zero mass are assumed to surround the grid that defines the

physical object. Thus points associated with the surface of the physical object may be

calculated without changing the logic. Normally a free surface boundary condition is

provided, i.e. the pseudo zone pressures are considered always equal to zero. Pressure

boundary conditions may be applied by entering the desired space-time values into the

pseudo zones.

A reflection boundary condition is obtained by setting equal to zero the normal

component of accelerations of a surface point when it points into the reflection surface.

CHECK PROBLEMS

Simple Harmonic Motion

The calculation of the motion of a vibrating plate, clamped at one end, provides a

problem that can be readily checked by elasticity theory. Orienting the plate at an

arbitrary angle in three dimensional space activates all six components of the stress

tensor.

In the calculations shown in Fig. 4 an elastic plate clamped at the top is set into

motion by applying a velocity v = 10 m/s to the lower right edge in the direction

perpendicular to the edge for a time t = 50 ps. After this time the applied velocity is
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released, but the lower portion of the plate continues to move due to the kinetic energy.

Actually upon release the end of the plate initially moves faster than the applied velocity

since this velocity does not correspond to the natural frequency of the plate. Figure 4d is

a time-displacement plot for a position in the geometric center of the bottom plane of the
plate. It is easily verified that the calculation reproduces the fundamental frequency of

the plate.

length: L = 52.5 mm
Dimension& width: W =20.0 mm

thickness: T = 10.0 mm

bulk modulus : k = 188 GPa
Elastic constants: shear modulus: g~t = 81.4 GPa

.density: p0 = 7.72 Mg/nm

The tensor artificial viscosity used in this calculation is CNS = 0.05, more than enough to
suppress grid oscillations that would otherwise occur. Figure 4d shows that the

amplitude of the oscillation has not been damped or affected by the artificial viscosity.

Plastieity

The impact of a right circular cylinder on a rigid boundary provides a calculation

to test the plasticity aspect of the computer program. Since this problem requires only

two space dimensions it can be calculated with the HEMP program. 1 Figure 5a shows
results of the HEMP calculation where cylindrical symmetry is incorporated into the

fundamental equations. Figure 5b shows results of the same problem calculated with the

HEMP 3D program described here. It can be seen in Figure 5b that the cylinder has been

discretized with three dimensional zones. The calculated time to stop the cylinder, 30 lis,
and the final cylinder length, 19.28 mm, were the same for both HEMP and HEMP 3D.

Comparison of the cylinder profiles at t = 30 .ls also showed almost identical results.
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SLIDING SURFACES IN THREE DIMENSIONS

The sliding surface technique described here has evolved over several
years of applications. Very good results are obtained even for severely warped
surfaces.

The implementation of sliding surfaces in a three dimensional Lagrange
grid i, j, k follows similar procedures as slide lines in the two dimensional
problem.1 However, instead of mapping stresses from one side of the interface
to the other side the vector accelerations are added from one side of the interface
to the other. (This method can also be used in two dimensions but there is no
particular advantage). Interfaces are defined in i, j, k space that separates two
regions. The grid points at the interface of one region slide on the surface
provided by the grid points of the opposite region and vice versa. The grid
points associated with one side of the interface are designated in advance as
slave points while the grid points associated with the opposite side of the
interface are designated master points. The calculations are symmetric in that
the grid points of both regions at the interface are advanced in time in the same
manner. After the grid points associated with each region have been advanced
by the integration time step, the position of slave points are adjusted to lie on the
surface defined by the master points when penetration of one grid surface into
the opposite grid surface occurs. It has been found convenient to define a local
surface at each grid point as the plane through the grid point that is
perpendicular to the normal vector defined at the point. Thus, the interface
between two regions is actually composed of a series of local surfaces.

All grid points at the interface of the two regions are tagged as either void
open or void closed. Void open means there is a void between the point and the
opposite surface and void closed means the point is in contact with the opposite
surface. Void open points are advanced in time with the usual free surface
calculations.

At the interface between the two regions it will be convenient to refer to
the point that is currently being advanced as the "current" point. Parameters
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associated with the other side of the interface that are required to advance a

current point are identified by the word "opposite." The roles are then reversed

after calculations have been completed for one side of the interface. The

symmetry of the calculation permits sliding surfaces to be defined

simultaneously in more than one direction. However, for illustration of the

method, we will assume a sliding surface at a constant Lagrange coordinate j; see

Fig. 6. The letter f will be used to designate a current point.

Free surface boundary conditions are used to calculate the acceleration of

point f in the x, y, z coordinate system. The components of acceleration are

transformed into a coordinate system where two components are in the plane of

the sliding surface interface at point f. The acceleration component normal to the

interface includes a contribution of mass from the opposite grid and in addition,

the normal component of acceleration of the opposite grid. The two acceleration

components in the plane of the interface are unchanged by the presence of the

interface. The normal component of acceleration from the opposite grid must

include a contribution of mass from the present grid. Thus, the symmetric

treatment of the interface calculations requires preprocessing each side of the

interface. A final calculation is then made to advance in time points associated

with each side of the interface.

OUTLINE OF SLIDING SURFACE CALCULATION

For every grid point on the sliding surface interface, calculate in advance

the following quantities and store with the grid point.

1. The mass per unit area, m.

2. The acceleration assuming the point is on a free surface.

3. An outward pointing unit vector normal to an element of surface

defined at each point on the sliding surface interface.



29

Step 11

For each current void dosed grid point f:

1. Locate the three points of the opposite grid that are closest to point

f.

2. Determine by interpolation the mass per unit area of the opposite

grid at the position of point f.

3. Calculate the mass weighting factor at point f (z-factor).

4. Resolve the acceleration obtained in Step 1-2 in the direction of the
normal vector defined in Step 1-3.

5. Repeat 1-4 with the opposite grid as the current grid.

Step mIl

For each current void dosed grid point f:

1. Locate the three points of the opposite grid that are closest to point

f.

2. Determine by interpolation a value for the normal component of

acceleration from the opposite grid at the position of current grid

point f.

3. Add to the normal component of acceleration of the present grid

from step 11-4 the normal component of acceleration contributed by
the opposite grid from Step 2 above.

4. Calculate new velocities and new coordinates in the x, y, z

coordinate system.
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5. Repeat 1-4 with the opposite grid as the current grid.

Step IV

1. Test for penetration of the current grid points into the opposite

grid.

2. Adjust the velocities for all points that have penetrated the opposite

grid to conserve momentum.

3. Repeat (1) and (2) with the opposite grid as the current grid.

4. Relocate slave grid points that have penetrated the master grid onto

the master grid. Void open points are advanced in time in the x,y,z

coordinate system using free surface boundary conditions

independent of Steps I, H and MI. If penetration of the opposite grid

occurs from Step IV the point is relocated and labeled void dosed.

Void dosed points are labeled void open when the distance of the

point to the opposite surface is greater than 10% of the zone size.

Calculational Steps to Advance in Time Grid Points on a Sliding Surface

1. Calculate the mass per unit area for all grid points on the sliding

interface. Referring to Fig. 6 assume point a is a point on the

interface. The mass per unit area, ma, is given by:

+ . M , + MO _..+ M.]m*2- A, +AO+,+A,

MeD is the mass of zone (i) etc. A(D is the area of the triangle in zone G)

that is associated with opposite grid point a. Similar for A4 , AG, and
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A®. The parameter ma is seen to be the average of the mass per unit areas

of the zones that share point a.

2. Calculate the acceleration of each point on the interface with free surface

boundary conditions.

a. For a given point i, j, k calculate the acceleration A-J.k (see point a

Fig. 6).

dxý d-. dz-
A~j~k +-j +-

i) x direction

A [t 2+ OTX + where

-- {(,)[(y,-Y,)(z, -z,)-(z,, -Z ZV)(Y,, -Yv)]

"+ (T,),[(y- YvXZV, - zV)- (z,, - Zv)(yvi-,y)]

"+ (-=)( YI-y)(ZVI -Z) - (Z) - ZI-)(Yv, - Yff)]

"+ (Iz).[(yvi -yz,- Z1,) - (zV, - Z,,,Xy,, - y,,,)]

(I)ij.k -O + Me + Me + me]

To form (li /p dr•, '•)..k, replace each 4x in the right side of the above

expression with Txy, every y with the corresponding z, and each z with the

corresponding x.

To form (l/p dTT./ d)2..k , replace each -xx in the above expression with

Tm, every y with the corresponding x, and every z with the corresponding y.
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ii) y direction

= - + +dxz] ; where

= same as defined above,

except replace each Xxx by the corresponding value of Txy.

d Z same as -I-dr.). defined above,

except replace each Txy by the corresponding value of L.y.

(.-rj = same as (I1)^defined above,( & P,/. =tp j,.k.

except replace each Tzx by the corresponding value of Tyz.

iii) z direction

(•.,, pin,. •+• •J,.,.,
(dL= PZ.k [. I x y42 aj:

P &). = same as defined above,

except replace each Ixx by the corresponding value of Tzx.

(!I-s--Y same. as -- defined above,

ee rlT y j..A or nPin o )a jy

except replace each Tx) by the corresponding value of Tyz.
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( dy = same as (IAdTi.j defined above,)mij~k £p - )ft.k.

except replace each Tzx by the corresponding value of -zz.

Determine an outward pointing unit vector normal to an element of

surface defined at each point on the sliding surface interface. Referring to Fig. 6

assume point a is any point on the sliding surface interface.

a) Calculate the normal vectors for each of the triangular surface areas

associated with point a. The normal vector corresponding to zone

a is:

j k

r..v.J, = v - Xe YV - Y. ZV - Z.

IXjv- x. Y/v - Y. z1V - Z.

= Aa.*. V + B..v J+ Cv.iv k

where

A..V =[(YV - Y.) (zj, - z.)-(zV - z.) (YV - Y)]

C,.V.j, = [(xV - x-) (YV - Y)- (YV - Yy ) (xi X-)]

Similar for zones ©, 0, and@, Fig. 6.

Note: The vector cross products must be taken so that the normal

vectors point outward from the grid. A convenient way to assure
that vector ro.v.a, points outward from the grid is to take the dot
product of Fo.vai with the vector formed by point a and its

corresponding interior point. The interior point is called a

connector point. In Fig. 6 point VI is the connector point for point
a. If the product is positive reverse the sign F,.v, otherwise the

vector has the correct outward direction.
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b) Calculate F., a unit vector obtained from the average of the vectors

perpendicular to the triangles that surround point a, i.e., Fig. 6

triangles (a,V,IV), (a,IV,llI), (a,llI,Il) and (a,IIV).

i. = A4 J +BJ+C. 4k .+ A•+B+C•. =Ii +mj+nk

where Aa, Ba, and Ca are the direction numbers of vector ra and 1,

m and n are the direction cosines.

A. = (A..v.,, + A.,4 .,, + A..m., + A.,,.V)

B. = (B..,.,v + B.,,,,,, + B..,,,.,, + B.)

C. = (c..V. + -a., , + C..,,,., + C.,.,,)

Locate the opposite surface points associated with each current void

closed point f:

a) Calculate df, the square of the distance from point f to successive

points i, k of the opposite grid.

b) Let point a, of the opposite grid be the point which has the shortest

distance from point f. See Fig. 7.

c) Project the points 1, 2, 3, 4 and f onto the local surface at point a,

defined by point a and the unit vector F. at point a. Designate as

(x*, y*, z*)i the coordinates of a point i and (x, y, z)i the coordinates

after projection onto the local surface at point a.

x. = x, - 1d.
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y. =y" -md,

z. = z. - nd.

where di = F.- cl i = 1, 2, 3, 4, and f. The vectors iFi are formed by the

points i and the origin. Here 1, m and n are the direction cosines of
I;, the unit vector at point a calculated in Step I.3b.

d) Point f can be in any one of the four quadrants formed by the
projections of opposite grid points surrounding point a onto the

surface defined by point a and the unit vector at point a, Fig. 7. The

following procedure is used to locate the quadrant that contains

current point f.

i) Referring to Fig. 7 calculate the area of triangles Aa,2,3, cx, 0,

and y using the coordinates obtained in Step 1c above.

ii) Point f is contained within triangle Aa,2,3 if: [Aa,2,3 - (Cc + 0 +

Y) < 10-3 Aa2,3]. Here, Aa,2,3, ax, 0, y refer to the areas of the
triangles.

iii) Repeat step (2) for the remaining quadrants.

iv) If all quadrant tests fail to locate point f then select the next

closest point a to point f and repeat (1-3).

v) Repeat (1-4) for all points f in the current plane.

Note: It is important that the search logic described above be

conducted with the grid points projected onto the local surface

(Step lc).

e) It is necessary to determine when a current point f is not covered by
the opposite grid as shown in Fig. 8. Assume current point f has

been determined closest to opposite grid point a and it is known

that grid point a is on the boundary of the opposite grid, Fig. 8. The
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four quadrants for the search routine described above are

formulated by extending the opposite grid through point a.

Referring to Fig. 8 an extension point 3 is established by calculating

a vector extension.

i) f/3 = fl. + k.(~ - /)

Here IV designates the vector formed by point a and the origin.

Similar for points 1 and 3. The parameter ke provides the

dimension of the extension. k, is taken as a large number, e.g.,

1000, to assure that point f is covered by the opposite grid for the

search routine that locates the quadrant.

ii) Coordinates of extension point 3 (Fig. 9)

x3 = x. + k.(x. - xi)

y3 = y. + k.(Y. - y1)

z3 =z.+k.(z. - z, )

iii) When point f has been located in a quadrant that contains

the extension point it is outside the opposite grid. If the

point is more than one zone thickness off the opposite grid it

is considered a free point independent of the sliding

interface. If the point is less than a zone thickness off the

opposite grid it is considered still on the sliding interface. To

make this distinction the extension point is recalculated with

a value of k, to provide an extension of the opposite grid of

approximately one zone thickness of the current grid. (The

default value is k, = 1, which assumes both grids are the

same size).

Point e in Fig. 8 is the new extension point. The following

method is used to locate the position of current point f with

respect to the extension surface. Calculate:
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S.C, d
A.' + B,' + C.'d

Here Ae, Be and Ce are the direction numbers of vectorC,.

S is the vector from point a to current point f and e, the

vector from point a to the extension point e.

If de >ý 1, point f is beyond the extension and is accelerated

with free surface boundary conditions.

If de < 1, point f is considered to be still on the sliding

interface and the calculation proceeds.

2. Calculate an interpolated mass per unit area, mf, at the position

corresponding to point f. Figure 9 shows an overlay of the current grid

containing point f on the opposite grid. We wish to obtain the mass per

unit area of the opposite grid at the position of current point f. This mass

per unit area will then be used to increase the mass associated with point f

for the acceleration of point f in the direction normal to the sliding

interface.

Referring to Fig. 10 the mass per unit area at point f is:

(m rn.a + mbi + my

a+f3+y

See Step I-I for the calculation of ma, etc.

3. Calculate the mass weighting factor at point f. (z factor)

a) Let Mm be the mass due to the opposite surface that is to be

included with the mass of point f.

Mm = (mr) [A@ + A® + AM + A®] (see Fig. 9)
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Here Aa® is the scalar ai ea of the triangle (f, V, IV) in zone B Fig. 11,

and is calculated as follows:

2A4 = V(A,..,1)2 + (Bf,'.jV) +(c,V.) 2

where

,.v.l = [(xv - x,) (ZV - Z,)- (Z - Z,) (xN - x,)]

c,Vp.. =[(XV -X,) (YA- Y,)(YVY,-) (X•- x,)1

Similar for 2AO ,2A(D and 2AO.

b) Calculate the z-factor

z=l+I M.

Here Maj etc. are the masses associated with point f, see Fig. 11.

4. Calculate the acceleration of grid points on the sliding surface. The

acceleration normal to the sliding surface includes the mass from the

opposite grid using the z-factor determined from the preceding step.

a) Calculate V;, the free surface acceleration of point f resolved in the

direction of the average normal, fI.

R; = (A; -,),,Y

The free surface acceleration of point f, ,, was calculated in Step I-

2. The average normal, F., was calculated in Step 1.3.b.
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b) Calculate iV, the acceleration of current point f in the direction of

the average normal that includes the mass of the opposite grid.

z

5. Repeat 1-4 with the opposite grid as the current grid.

Note: Nf is a partial acceleration normal to the surface defined at point f

that includes the mass of the opposite grid. The total normal acceleration

of current point f must also include a contribution from the opposite grid

and is described in Step Ill that follows.

Step ill

1. For the current void closed point f, locate the opposite grid points that

surround point f. See Step 11-1 and Fig. 9.

2. From the three opposite grid points a, b, c that surround point f, Fig. 10,
determine acceleration vector/V7. Vector V• is an interpolated normal

component of acceleration from the opposite grid at the position of point L

The interpolation method is shown in Fig. 10.

gfo=N.a +NbP +NCy
a+1+r

N,.Nvb and RN are the accelerations of opposite grid points a, b and c

calculated in Step 11-5.

Test for void opening. If N1 " C1 >- 0 and /fOG C 1 < 0 tag point f as void

open. N1 is calculated in Step 11-4. The vector C1 is formed by point f and

the connector point associated with point f. If the above test is positive the
acceleration of point f is given by A;, the free surface acceleration from

Step 1-2.
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3. Calculate the total acceleration, A., of point f.

A, = A;- N; +N1f+N/= = Ai" + Aj + Ak

Note: Nf must be saved for use in the interpolation procedure when the

above process is reversed and the current grid becomes the opposite grid.

4. Calculate the x, y, z components of velocity and new coordinates for

current point f.

a) Velocity

n171/2 = j;71/2 + AtnA.
ý71,I = ý;-,7 + At

i+1/2 = i-1/2 + AtA

b) New coordinates

X;;I =XI; +Xf;÷,,2--,,

y; 1 =y; + s;+1,2&•+ /2

n;+1 Z; +*+1I2&n+1I2

5. Repeat 1-4 for all interface grid points.

Step IV

1. Test to see if a point f has penetrated the opposite grid. Assume f, in Fig.

7, is a point on a grid that is to be tested for penetration into the opposite

grid local su! r-.4 c at point a.

a. Calctulte d the perpendicular distance from the point f to the local

surface at point a.
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[T+T+ k- [(x, -x.) '7+(f-y) +z f -z.

or

d = J[/(x, - x.) + my . ~f-z)

Here 1, m n are the direction cosines of the unit vector defined at

point a (see Step 1.3b).

b. If 0 < d < + 6, point fn+l remains as calculated in Step IIM with the

same void status as before. Here 8 is a positive number equal to 0.1
times the grid spacing calculated as:

8 = 0.11A2 + B2 +C 2

c. If d > 8, point fn+l remains as calculated in Step IMI and is tagged

void open.

d. If d < 0 point fn+1 has penetrated the opposite grid and is tagged

void dosed.

2. Adjust the velocities of all void dosed points.

a. Calculate velocities normal to the interface. Assume point f in Fig.

9 has penetrated the local surface at point a of the opposite grid,

calculate the velocity components INI,, •N, ]b and ki, that are

normal to the surface.

R. =/. + mý. +ni.

tb == b +mýb + ,b

Iýf = Li+ + m +ni

N1f = Li, + mf+ nif
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b. Calculate k, the velocity of point f from the conservation of linear

momentum:

• tx7 + IMbNb+ ,MN, 1
a+#+y + M

+ [M +=W. +MW, +

Mf !-Me Me+ M + Me] =2(0)/

M. +-![Me +Me +Me + Me] 2(o).

similar for Mb and Mc.

Note: The mass 0 associated with a point on the interface is

calculated in Step. L

Note: To minimize the number of calculations, only the linear

momentum has been considered instead of including conservation

of angular and linear momentum as was done in the two
dimensional problem. Actually it is the artificial viscosity, q, and

the equations of motion that accomplish the conservation of
momentum. Adjusting the velocities at the interface after a

collision sets up the initial conditions for the artificial viscosities on
each side of the interface.

c) Calculate the x, y, z components of the new velocity of point f.

1 +1/2 . flk

y1 / =y1 + mA 1I
*i;+1/2 = +* +/ kwh ,,r =z + +-iI

where
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Here x;, y;, z; refers to the velocity of point f before the adjustment

for conservation of momentum. The velocities of all void closed

points are adjusted point by point. That is, only the velocity of the

point under consideration is adjusted, point f in the example

described above. The velocities of all mass points on one side of the

grid are adjusted when penetration has occurred. Subsequently the

velocities of all points on the opposite grid are adjusted. Thus, all

of the old velocities and coordinates must be retained until all of

the velocities of both sets of sliding surface points have been

adjusted.

3. Declare one grid the slave grid and the grid opposite it the master grid.

Relocate slave points onto the master surface for slave points where d < -8.

A slave point f that has penetrated the master surface is set back to the

master surface by subtracting the length d from the position of the point.

For the sign convention used here d is a negative number. The direction

cosines 1, m, n point outward from the grid, thus the new coordinates of

point f are:

x71  -/Id
+1=y-md

Z71 =Yz -nzj•+ z,-nd

Here x;, y;, z; refers to the coordinates of point f used to determine that

d < -8.

When penetration occurs new velocities are calculated on both sides of the

interface, but only the position of slave points are adjusted.
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APPLICATIONS OF SLIDING SURFACE ROUTINE

The major difficulty with sliding surface routines arises from failure of the
search routines that must locate one grid with respect to the other. The problem
becomes aggravated with curved or warped surfaces with a search routine that
operates in three dimensions. The method used here projects the grid point onto
local two dimensional surfaces to establish the orientation of one grid with
respect to the other. With this procedure the search technique is robust even for
distorted surfaces. Figure 12 shows an application with two curved surfaces.
Fig. 13 shows the acceleration of a metal plate by an explosive with a sliding
surface between the two materials. The explosive was detonated at nine equally
spaced points on a line along the top surface of the explosive.4

ZONE DIMENSION CHANGE AND SUBCYCLING

It is useful to be able to change from coarse to fine zoning in a localized
region and to be able to join two independent grids at an interface. The latter
being especially important for constructing grids for three dimensional problems.

Zone dimension change at an interface in two dimensions

Figure 14 shows schematically a zone change from large to small zones
across a Lagrange coordinate k, The grid with the largest zone size is chosen as

the master grid and the small zone grid the slave grid. The master grid defines
the interface k,. In Fig. 14 grid points associated with the master and slave grids
are shown as closed circles and open circles, respectively.

1. To advance in time master and slave points on the interface k,, Fig. 14.

a. Calculate the partial acceleration of all master points j, k on k-line
k,.

Components of partial acceleration for point a, Fig. 14.
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(')'ter- - (x - ,)- -(YT,)(x+ (-•4,)]( - Y(a)

C19ik-( +,•,-,:, -•c•,,1=) - £---. +•" + -M

an IonoteMaster gId.

-(Thsm,,e p(roed -as , abv (i,,s us (,,, -z fa ctor n

= I (p°An + (pOaR)

ai j". k = I• J[T ( ® T

The z factor that is found in equations (i) and (ii) above is obtained

by mapping the masses of the slave zones between master points 1I

and IV onto the master grid.

b. Calculate the partial accelerations for all slave points on M-ine, k,.

The same procedure as above is used. The z factor now maps mass

from the master grid onto the slave grid.

c. For each master grid point on k-line k, determine a slave grid

partial acceleration by interpolation. Referring to Fig. 14 the slave

grid partial acceleration corresponding to master grid point a is:

(d-sav slave ).' lave

Ct a "(), + a)(
dt dt

Here a = 1., /l, where 4, is the distance between points a and t and

is, the distance between points s and t.

Similar for
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d. Calculate the total acceleration of all master points un k-line ks.

Referring to Fig. 14 the total acceleration of master point a (point j,

k Fig. 14) is:

(7tdt), d, dt}

Similar for

e. Calculate new velocities for all master points on k-line ks.

*n4/2 =*u-1;l12+ nl/ax'j.+k = .dt )j.k

X 41/ = Xjk;1/ + Atn+/(f

YJ.k = Y .k + A ( dt Jj.k

f. Obtain new velocities for the slave grid points on k-line ks by

interpolation so that the original spacing between consecutive

master points is maintained. Referring to Fig. 14 the new velocities

for slave point t are:

e,+112 = 1 1n+1/2 + (1- r)+12

*,',+1 /.2 =P ý: + (1-/3)P:+ /2

=.b
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Here 03 is a constant calculated when the grid is generated. !,, is the
distance from point t to point b and l, the distance between points

a and b.

Zone dimension change at an interface in three dimensions

The same procedure is followed as described for the two dimensional
case. Fig. 15 shows two grids that are to be joined together without the interface

grid points of both grids being necessarily coincident.

1. To advance in time master and slave points at the interface of two

grids.

a. Calculate the partial acceleration for all interface grid points

associated with the master grid. Referring to Fig. 15 we wish
to accelerate grid point a associated with master grid zones

Partial acceleration in x-direction.

i) a =I) +J , where

(= 4'..J (E.~).,[(YVI Yv) (Z/V - zv) -(ZVI, Zv XYf ~YV)]p•, & ).•. z4(Dj.

"+ (Y-).[(Y,, -Yv) (Z, -zV)-(z,- ZV)(Yv,- YV)]

"+ (I-)[Y,- Y,11 ) (Zv - z) - (z- Z)(YvI -y)]

+ (I.).[(Yv, - Y,,) (ZI,- z,,) -(ZVI,- z1,,,xy,,- y,,)]

1M
ii) (D),.j.h = Mm + Ma, + Mm + Me]

8
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The factor z that appears in (ii) above is the weighting factor that maps the

mass of the opposite grid. The remaining terms in equation (i) are composed in

the usual manner and include the z factor, as shown in equation (ii), the finite

difference equation for the first term in equation 1. In a similar manner the y, z

components are calculated.

b. Calculate the partial acceleration for all points associated

with the slave grid on the interface. The z-factor now maps

the mass from the master surface onto the slave grid-point.

c. For each master grid point determine a slave grid partial

acceleration by interpolation. Referring to Fig. 16 assume

master grid point a has been found to be in the

neighborhood of slave grid points f, g, h.

(• __'',A)- = 4 A + Y

t Ja+13+y

Here f, g& and h denotes the partial acceleration of slave grid

points. Similar for the y, z components.

d. Calculate the total acceleration for all master points on the
interface. For master point a (point i, j, k, Fig. 15) the total

acceleration is:

Similar for y, z components of acceleration.

e. Calculate new velocities for all master points on the

interface.

f. Obtain new velocities for the slave grid points on the

interface using the interpolation scheme above.
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Subcycling with zone dimension change in two dimensions

The time step for a given cycle is dictated by the zone with the smallest

zone dimension divided by the local sound speed. Rather than calculate the

entire grid with a given time step a saving in computer time can be obtained by

dividing the grid into different regions with a different time step for each region.

A region with small zones is calculated for several time steps until the time step

of a region that can use a larger time step is reached. The region with the larger

time step is then advanced with a single time step equal to the sum of the time

steps used in the region with the small zone. It is convenient to calculate the

region with the largest time step first. The time steps for the regions with the

smaller time step requirements are chosen so that an integral number of equal

time steps can be used to reach the time step used for the largest grid.

Example for a zone size change of two to one

1. With a time step At calculate new velocities for all grid points of the

largest grid using the stress boundary conditions provided by the

small grid. Advance all points of the large grid and calculate the

new zonal parameters. Save the old positions of the large grid for

points on the interface between the two grids.

2. Find the new velocities of all small grid points that are on the

interface by interpolation. These velocities are the boundary

conditions during the subcycling of the small grid.

3. With the old interface positions, so that all of the positions of the

small grid points are at the same time calculate new velocities from

the acceleration equations for all small grid points except those on

the interface using a time step At/2.

4. Calculate new coordinates for all of the small grid points including

those on the interface. The points on the interface use velocities
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from step b to obtain new coordinates and the remainder of the

points of the small grid used in the velocities from Step c.

5. Calculate the new zonal quantities for the small grid.

6. Calculate new velocities again for all small grid points except those

on the interface using time Step At/2.

7. Calculate new coordinates for all grid points including those on the

interface. (The large grid coordinates will now coincide with the

values obtained in Step 1.

8. Calculate new zonal quantities for the small grid.

The procedure is similar for three dimensions.
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Fig. 1. Grid numbering scheme for Zone 0.
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Fig. 4. Simulation of the motion of a vibrating elastic plate. (a) Position of
maximum positive displacement, t = 275 I±s. (b) Position of maximum
kinetic energy, t = 360 gis. (c) Position of maximum negative displacement,
t = 450 Rs. (d) Displacement history for a point in the geometric center of
the bottom plane.
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Fig. 5. Simulation of the impact of a cylinder on a rigid wall. Constitutive

model:

Pressure P =76 -L -1 GPa

Density p0 = 2.7 Mg/r 3

Shear modulus ge = 24.8 Pa

Flow stress Y = 0.46 (0.008 + e)" GPa

eP is the equivalent plastic strain.
(a) Before and after views using the two-dimensional HEMP program.
(b) Two views using the HEMP 3D program.
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Fig. 6. Calculational grid separated at a constant Lagrange coordinate j.

View of a current grid point f on the interface.
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Fig. 7. Schematic grid to determine which of the four opposite grid zones covers
a current point f.

(a) Quadrants surrounding opposite grid point a with current grid point f
in quadrant 3.

(b) System of triangle shown for quadrant 3.
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Fig.8. Schematic grid to determine if a current point f is outside the opposite
grid.
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b map mb, mc are the mass per unit
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Fig. 10. Weighting scheme for obtaining the value of a parameter defined at
points a, b, c at position f.
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Fig. 12. Simulation of a copper plate charge striking a tungsten projectile.
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Fig. 11. Grid associated with current point f.
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Fig. 13. Calculation of a three-dimensional implosion of a copper liner.

(a) Section view of geometry.
(b) Time sequence of implosion.
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Fig. 14. Schematic of a zone dimension change at k-line ks.
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Fig. 15. joining of two independent grids.
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Fig. 16. Interpolation scheme for obtaining at position a information defined at
positions f, g, h.


